
CHAPTER 2

SERVLETS ARCHITECTURE

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

2

OBJECTIVES

After completing “Servlets Architecture,” you will be able to:

• Identify the various packages that constitute the Servlets
API.

• Understand the types in the javax.servlet.http package, and
how they are useful in constructing Servlets.

− Why do we need HttpServlet, a concrete implementation of the
generic Servlet interface?

− What is the role played by HttpServletRequest and
HttpServletResponse objects?

− What are servlet attributes?

• Understand the generic servlet structure.

• Understand and appreciate the role of web containers in
providing the runtime environment for servlets.

• Gain some insights into the life cycle of servlets – from its
birth to destruction – within the runtime environment.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

3

Understanding the DateTime Servlet

• In last chapter, we worked with some simple servlet examples.
Let us take our first example and try to understand the code, bit
by bit.

− Look in Examples\DateTime\Step0.

− See src\cc\datetime\DateTime.java.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Date;

public class DateTimeServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();

 out.println ("<html>");
 out.println ("<head>");
 out.println (" <title>Date and Time
 Example</title>");
 out.println ("</head>");
 ...
 out.println (" <p>Today's date and time is " +
 new Date () + ".</p>");
 ...
 }
}

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

4

Imported Packages

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

• The two most important packages that are imported in almost
all servlet source files are javax.servlet and
javax.servlet.http.

− From the previous chapter we can recollect that most of the servlet
classes and interfaces belonged to one of these two packages.

− Additional packages might be required, depending on what we are
trying to do within the servlet.

− In the present example, we need the java.io package to write the
HTML output back to the HTTP stream.

− We also imported java.util package for the Date class we are
using.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

5

HttpServlet Class

public class DateTimeServlet extends HttpServlet
{

• You should be wondering why we are ‘extending’ the
javax.servlet.http. HttpServlet class instead of
‘implementing’ the basic javax.servlet.Servlet interface.

• Remember that the protocol we need to speak is HTTP, and
that the Servlets API is not tied to HTTP.

− javax.servlet. Servlet is only a basic interface. But
javax.servlet.http. HttpServlet is an abstract class that
implements the basic Servlet interface for talking HTTP.

− By extending javax.servlet.http.HttpServlet, we need not worry
about the nuances of the HTTP protocol and instead can
concentrate on business logic (e.g. displaying the date).

− For web application servlets, javax.servlet.http.HttpServlet is
the only class that needs to be extended.

− In case you want to talk custom protocols (say WAP), you may
write your own implementations of the Servlet interface.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

6

HttpServlet Methods

• HttpServlet provides several key methods, any or all of which
can be overridden to handle a certain sort of HTTP request:

public class javax.servlet.http.HttpServlet
 implements javax.servlet.Servlet
{
 ...
 /* This is not a comprehensive listing */
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response);
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response);
 protected void doPut(HttpServletRequest request,
 HttpServletResponse response);
 ...
}

• The service implementation in the base class dispatches the
request to one of these methods, based on the HTTP verb.

• The most useful methods in the above group are doGet and
doPost.

− When you are expecting your clients to invoke the servlet through
an HTTP GET request, you can implement doGet. Otherwise use
doPost.

− If you are expecting both types of requests, implement both!

− A common approach is to have one delegate to the other, since
their signatures are the same.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

7

Request and Response Objects

public void doGet
 (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException

• The doXXX methods have two important arguments, of types
HttpServletRequest and HttpServletResponse.

− These interfaces provide methods to access the underlying input
and output streams associated with the client connection.

− Objects are created by the servlet container and passed to doXXX
methods for further processing by applications.

− The request object encapsulates the request made by the client to
the servlet; response encapsulates the response returned by the
servlet to the client.

− In the current example, we do not expect any inputs from the
calling client applications; hence we may not need access to the
request object.

− However, since we need to return an HTML stream, containing the
date value, we will be making use of response.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

8

HttpServletRequest Methods

• Here are some of the most commonly used methods on
ServletRequest:

public interface javax.servlet.ServletRequest
{
 public String getParameter (String key);
 public Enumeration getParameterNames ();
 public String[] getParameterValues (String key);

 public String getContentType ();
 public ServletInputStream getInputStream ();
}

• getParameter and related methods provide access to
parameters included in the HTTP request.

− These may have been encoded in the URL in CGI syntax, in the
case of HTTP GET:

http://my.com/MyServlet?name=Gokul&course=Servlets

− For HTTP POST, parameters are passed as part of the request
body.

− In either case, parameters are name-value pairs. For the above
request, getParameter ("course") would return a Java String with
the value “Servlets”.

− Names are typically unique, but need not be, and in some cases
multiple values can be grouped under one name.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

9

HttpServletResponse Methods

• Having explored the request object, let us get to know
HttpServletResponse object, which implements the
javax.servlet.ServletResponse interface:

public interface javax.servlet.ServletResponse
{
 public void setContentType(String type);
 public void setContentLength(int size);
 public ServletOutputStream getOutputStream();
 public PrintWriter getWriter();
 public void sendRedirect (String URL);
}

− In our example, we have used two of these methods:
response.setContentType ("text/html");
PrintWriter out = response.getWriter ();

− The content type is a MIME type identifier – the most common
type will be “text/html”, but “text/plain” and “text/xml” are also
common.

− getWriter gives us a handy reference to the response output
stream as a java.io.PrintWriter, which can then be used to
produce character output that is handed to the client browser.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

10

Writing the HTML Response

 out.println ("<html>");
 out.println ("<head>");
 out.println (" <title>Date and Time
 Example</title>");
 out.println ("</head>");
 ...
 out.println (" <p>Today's date and time is " +
 new Date () + ".</p>");
 ...

• The last lines of DateTime.java simply write out a few HTML
lines to the standard PrintWriter object out.

− One of the biggest shortcomings of servlets is hidden in these lines
…

− When you want to change something in the outgoing HTML, you
must edit the servlet code directly, recompile the servlet and re-
deploy!

− This could be a painstaking process, and it must be undertaken to
implement changes not only in dynamic functions, but also in
basic look-and-feel or page design.

− We will be seeing a few ways out of this bind: template parsers and
forwarding to “view” handlers after processing.

• A cleaner and more efficient way to output HTML to the client
is to use JSP.

− JavaServer Pages or JSPs are another breed of server-side Java
technology. With JSPs, it is much easier to control the way output
is directed to clients.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

11

Generic Servlet Structure

• With what we have discussed so far, let us prepare a small
mind-map of how to construct servlets:

Import relevant
packages

import javax.servlet.*;
import javax.servlet.http.*;

public class DateTimeServlet
 extends HttpServlet

public void doGet
 (HttpServletRequest request,
 HttpServletResponse response)
 throws IOException,
 ServletException

String Input1 =
 request.getParameter("Input1");

...

response.setContentType
 ("text/html");
PrintWriter out =
 response.getWriter();
out.println("<html>");
...

Extend your class from
HttpServlet

Extend doGet or
doPost based on the
type of request

Read input parameters
using getAttribute or
getParameter

Perform the necessary
business logic

Output the contents
using PrintWriter or
RequestDispatcher

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

12

Redirecting the Web Server

• sendRedirect is another useful method.

− This method is best used for redirecting the client to a static HTML
page – “Thank you for your input” or “Sorry, we are unable to
process your request”.

response.sendRedirect ("Confirmation.html");

− This may be done after the servlet has done relevant processing; in
fact the “static” file may have just been created, although this is not
all that common.

• One can also redirect to another dynamic resource.

− It is also possible to invoke another servlet or Java class directly in
order to reuse functionality while retaining control over the final
output stream.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

13

The RequestInfo Servlet

In this lab you will write a servlet called HttpRequestInfo, compile
it and deploy it to Tomcat. You can have the DateTime servlet you
deployed in the earlier chapter, as a reference – which you can
modify to write the HttpRequestInfo servlet.

This exercise allows you to understand the intricacies of writing a
servlet and deploying it in a standard manner – the same
procedure is applicable for all servlets you’ll be writing in the
future.

Detailed instructions are contained in the Lab 2A write-up at the
end of the chapter.

Suggested time: 30 minutes

LAB 2A

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

14

The Redirector Servlet

In this lab you will write another servlet called HttpRedirector.
The job of this servlet is to redirect the request to a static HTML
page. You’ll use the sendRedirect method of the response object
to achieve this.

This exercise will familiarize you with the usage of various APIs
available with request and response objects. Also, sendRedirect is
a pretty useful method for practical web applications, when one
needs to redirect a response to a static HTML page.

Detailed instructions are contained in the Lab 2B write-up at the
end of the chapter.

Suggested time: 30 minutes

LAB 2B

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

15

Attributes and Scopes

• A major difference between J2SE applications and servlet
programming lies in how state is managed.

• Java classes typically store transient state in fields.

• Due to pooling of servlets and other container behaviors
intended to assure scalability, this is not a sound strategy for
servlets.

• Instead, the container provides several means of storing
transient state as named attributes.

• Attributes are managed by the application using four maps
provided by the container. Each of these is associated with a
different scope – these are listed here from most general to
most specific:

− Application scope is shared by all components in the same web
application, and attributes placed here live as long as the
application does – often from deployment to undeployment.

− Session scope is shared by components as they handle requests
from a common client, and attributes placed here live until the
client disconnects or the session “times out.”

− Request scope is shared by components over the duration of a
single request/response cycle. It allows a servlet to pass
information along to a component that will take over request
processing later in the cycle.

− Page scope is not shared by other components; it is something like
local storage for handling one request.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

16

Attribute Methods

• The various scopes are implemented in different places in the
Servlets API.

• The first that we’ll study is available on the request object. This
is a natural place to implement the request-scope attribute
map:

public interface javax.servlet.ServletRequest
{
 public Object getAttribute (String name);
 public Enumeration getAttributeNames ();
 public void setAttribute (String name, Object o);
 public void removeAttribute (String name);
}

• At first, it’s easy to confuse attributes and parameters.

− Request parameters are those values provided as part of the HTTP
request – either CGI-encoded in the HTTP GET URL or listed one
per text line in the body of an HTTP POST.

− Request attributes are generated and used entirely on the server
side of the cycle, and provide a means for multiple components
handling a request to share information.

− Until we start using multiple components to handle requests, this
is not likely to seem very useful!

− An architecture known as “Model 2” dictates that almost every
request will be handled by a chain of components, at least one
controller and one view. In this architecture, sharing attributes
and forwarding is a key technique.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

17

The Servlet Container

• Java Servlets defines the behavior of containers.

− Though many different flavors of containers are currently available
in the market, from different vendors, their basic behavior is the
same.

− This makes it possible to program servlets that are vendor-
independent, or portable.

− In other words, the servlets we write for one container can be
ported to a different vendor’s container – with very little or no
code change!

− For example, it is a very common practice to develop servlets in
Tomcat (which is free) and then host them in a commercial servlet
container such as WebLogic or WebSphere.

− If everything has been done to the specification – that is, to the
contract – then none of the Java code and very little of the XML in
the deployment descriptor will have to change when this porting is
done.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

18

Web Containers

• Servlet containers are now known by a more generic name –
“web containers.”

− Since the introduction of JavaServer Pages technology, many
Java web applications combine a host of JSPs, servlets, supporting
helper classes, libraries and static resources such as XML.

− The J2EE specifications define standard ways to package and
deploy such web applications to a container.

− The servlet containers were modified and expanded suitably to
handle these features and were given their new name.

− You might be wondering why JSP didn’t require a separate

container for its own purposes – can you think of any reasons?

Web Container

Java Server
Pages

Java Servlets

Helper Classes
and Libraries

Deployment
Descriptor

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

19

JSPs and Servlets in Web Containers

• Beneath the script-heavy surface, JSPs are nothing but Java
servlets!

− In fact, all JSPs are translated to servlets – often just before being
served.

− Thus it was needless to have separate containers to serve JSPs.
Servlet containers were enhanced to handle JSPs and understand
their deployment descriptors – thus becoming “web containers.”

− But things have started changing as the JSP 2.0 specifications have
taken shape, with JSP evolving in many ways – independent of
servlets.

− The day may not be far off when JSPs do indeed need to be hosted
in exclusive containers!

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

20

EJB Containers

• It’s interesting to note that Enterprise JavaBeans (or EJBs, if
you are Java-savvy) do need to be hosted in their own
independent containers.

− Enterprise JavaBeans is another integral technology defined under
the J2EE umbrella.

− As a group they have a dramatically different purpose, different life
cycle needs, and much more complex deployment descriptions
and features than JSPs and servlets.

− Today, in a comprehensive J2EE application server, only these two
containers dominate the landscape: web containers and EJB
Containers.

J2EE Runtime Environments

Web Container

Java Server
Pages

Java Servlets

Helper Classes
and Libraries

Deployment
Descriptor

EJB Container

EJBs

Helper Classes
and Libraries

Deployment
Descriptor

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

21

Servlet Life Cycle and Containers

• The servlet container controls a servlet’s life cycle!

− This is in striking contrast to J2SE applications, which are
instantiated and destroyed by the user.

− There is no need to use the constructor or main method to
instantiate and invoke servlet objects.

− The reason is that the servlet container takes responsibility for
instantiating and making the object available for use as well as
destroying it when it is not needed anymore.

• Why is life cycle management left to containers?

− Container management of J2EE components allows a number of
enterprise features to be implemented in the container, rather
than the component: security, scalability, and transaction
control are some common examples.

− These features can be implemented generically by the container,
with just a little declarative help from the deployment
descriptor.

− In this way, the programmer can concentrate on developing
business logic, instead of writing plumbing code to do low-level
system management.

− One important feature enabled by this management relationship is
pooling: the ability of the container to keep a limited-size set or
pool of servlet instances to serve any number of incoming
requests. This cuts the costs of object creation and destruction,
and is the key to scalability in servlet container implementations.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

22

Servlet Life Cycle

• A servlet’s life cycle follows through several stages –from its
instantiation or birth to destruction or death:

− Instantiation via an ordinary new operation – but invoked by the
container, not another application class

− Initialization via a lifecycle method init

− Service (most time spent here, handling any number of HTTP
requests from any number of clients)

− Destruction via a lifecycle method destroy

− Garbage collection as with any Java object

Servlet Container

Instantiation

Servlet Pool

Servlet
1

Client
Request 1

Servlet
2

Client
Request 2

Servlet
3

Client
Request 3

Servlet
4

Client
Request 4

Initialization

Servicing

Destruction

Garbage collection

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

23

The Life Cycle Methods

• As the servlet passes through different stages of its life cycle, the
container invokes some of the methods defined in
javax.servlet.Servlet interface:

public interface javax.servlet.Servlet
{
 public void init (ServletConfig config);
 public void service (ServletRequest request,
 ServletResponse response);
 public void destroy ();
 public String getServletInfo ();
}

− As the container invokes init, it also passes the ServletConfig
object as a parameter. This allows a servlet to access its
ServletConfig object and read its configuration data. init is called
only once, throughout the lifecycle of a servlet.

− As we saw earlier, for an instance of HttpServlet, the base service
method delegates to doXXX methods, based on the kind of HTTP
request.

− The container calls the destroy method before marking the servlet
for garbage collection. Once this method is completed, the servlet
is not available anymore for servicing the requests; a new instance
would have to be created and added to the container's pool.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

24

Initialization and Destruction Tasks

• During servlet initialization (i.e. within the init method), we
could …

− Initialize static fields from our application’s configuration files –
but beware of this, as we’ll explain later

− Read configuration parameters using the ServletConfig object
that is passed by the container to init

− Register a JDBC driver

− Initialize database connections and connection pools, if any

− Initialize logging or other services for our application

• As we move on to Chapter 6 – which deals with servlet
configuration – we will start coding inside the init method.

• During destruction, one usually just cleans up any
initializations.

− Many initialized object references can simply be let go – that is,
normal Java garbage collection is sufficient.

− Some however require explicit cleanup – for instance one must
close a database connection or other external resource.

© 2003-2008 Object Innovations and Will Provost.
All Rights Reserved by Capstone Courseware, LLC.

25

SUMMARY

• The Servlets API comprises two main packages:
javax.servlet and javax.servlet.http.

• All HTTP servlets extend the abstract HttpServlet class and
use one of the doXXX methods, as appropriate to the HTTP
verbs that are expected.

• HttpServletRequest and HttpServletResponse objects are
most useful for reading input and writing output.

• Web containers provide runtime environments for Java web
applications – which include Servlets, JSPs, HTML, XML and
other libraries.

• A servlet’s life cycle is controlled by the web container, and
not by the application code or an interactive user.

• A servlet’s life cycle consists of five distinct states:
instantiation, initialization, service, destruction and garbage
collection.

